首页> 外文OA文献 >High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique
【2h】

High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique

机译:使用混合热装配技术的热塑性纳米流体器件的工艺产率高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high Tg (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower Tg. Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (Tg = 104 °C) and sealed with a cover plate (Tg = 75 °C) at a temperature significantly below the Tg of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.
机译:在过去的十年中,热塑性塑料已被用作玻璃和硅的微流体器件的替代基板,因为可用于热塑性塑料的多样而稳固的制造协议可以以低成本,高复制保真度产生所需结构的高生产率。它们具有广泛的理化特性,并且可以采用简单的表面活化策略来调整其表面化学性质,以适合预期的应用。尽管聚合物微流体技术的优势目前正在被实现,但是基于热塑性塑料的纳米流体设备的发展充满了挑战。一个挑战是装置的组装,该装置包括将盖板密封到图案化的流体基底上。通常,在组装过程中会发生通道塌陷或基板溶解,从而导致器件无法操作,从而导致较低的工艺成品率。在这项工作中,我们报告了一种用于生产功能性热塑性纳米流体器件的低温混合装配方法,该工艺具有较高的工艺成品率(> 90%)和较短的总装配时间(16分钟)。该方法涉及将包含纳米流体结构的高Tg(玻璃化转变温度)基板热密封到具有较低Tg的盖板上。在热塑性衬底(Tg = 104°C)中制造出关键特征尺寸在25-250 nm之间的纳米流体器件,并在显着低于衬底Tg的温度下用盖板(Tg = 75°C)密封。从密封测试获得的结果表明,组装后纳米通道的完整性保持完整,并且器件可用于高信噪比的荧光成像。通过研究封闭的热塑性纳米流体通道中dsDNA的拉伸和易位动力学,证明了组装设备的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号